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1) INTRODUCTION

This is a lightening quick introduction to Lattice Gauge Theory. Many topics are
omitted and those covered may at times be starved of details. 1 shall make an effort to
remedy this problem by pointing you to appropriate references (A brief list of recommended
reading for background material is (1] [2] [3] [4] [5] 6] ). The aim here is to give you an
overview of the field.

The lattice formulation of Quantum Field Theory (QFT) can be exploited in many
ways. 1) We can derive the lattice Feynman rules and carry out weak coupling pertur-
bation expansions. The lattice then serves as a manifestly gauge invariant regularization
scheme, albeit one that is more complicated than standard continuum schemes. 2) Strong
coupling expansions: these give us useful qualitative information, but unfortunately no
hard numbers (7| . 3) The lattice theory is amenable to numerical simulations by which
one calculates the long distance properties of a strongly interacting theory from first prin-
ciples. The observables are measured as a function of the bare coupling g and a gauge
invariant cut-off ~ }, where a is the lattice spac’ng. The continuum (physical) behavior
is recovered in the limit a — 0, at which point the lattice artifacts go to zero. This is the
more powerful use of lattice formulation, so in these lectures | will focus on setting up the
theory for the purpose of numerical simulations to get hard numbers.

The rumerical techniques used in Lattice Gauge Theories have their roots in statistical
mechanics, 50 it is important to develop an intuition for the interconnection between
quantum mechanics and statistical mechanics. This will be the emphasis of the first leciure.
In the second lecture, I will review the essential ingredients of formulating QCD on the
lattice and discuss scaling and the contir'uum limit in lecture 3. In the last lecture [ will
summarize the status of some of the main results. [ will also mention the bottlenecks and
possible directions for research.

1.1) Connection between QM and Statlstical Mechanics
The first step is to eatablish the connection between the partition function and the
transition amplitude in quantum mechanics. For this consider the simple two state system
described by the Hamiltonian

" a, (03 Aay) (r.1)

in Fuclidean time 1 where X is small and the cigenstates [ - of o3 are used as basiy

states. The time evolution of a state - the quantum amplitude @(f.1) - is given by

e(fo)  (fle My (1.2)



To set up the path integral, divide the time interval 7 into N intervals, 7 = Nér. Then

Y(f,1) = (fle? MO Hom e i)y

~ ZZ (fle " HoTisny ) (sn-yle T8 lsn a) oo (syle 7o) (1.3)
8n 81

where Y, |s)(s| = 1 is a complete set of states. Eqn. (1.3) is the path integral represen-
tation of the quantum amplitude. The sum over states corresponds to all possible paths
(configurations) of the system. The correct weight factor e~ 5 where § is the action arises
from the accumulation of e~ #%" factors along the path [8] .

The quantum mechanical amplitude for finite time of propagation can be written ns
a product of Feynman kernels K

Y1) - D) K(fisn-1) K(Sno1,8nzz) ... K (s2,81) K (s1.,1) (1.4)

8n 8,

with a sum over intermediate states. K(sy,s,) is the transition amplitude to go from state

s; at time 7 to the state s; ¢t time 7 + 67. In the limit of srnall 67, we can solve for the

kernel K (sy,3,)
K(siy 8;) = (s,]e"H%7]s) = (si]1 — brap(oa —~ Aay)ls;))
N 1 - ao6r a,,)\JT (1 r)
B apAér 1 4 agbr ”

In the Schrodinger representation both K and ¢ are classical c-nimbers. Using eqn (1.5),
Y can also be written as

- andr  aorsr \" ?
; Hér 4y 0 HEr) - .
1) =~ e s syle 1 1.6
o) = (e "y (1 BT SN e (1)
The first and last facters are row and column vectors and depend on the choice of the final
and initial states "1 respectively.

To make the connection with statistical machanics, regard the kernel K(s,,s,) as an
interaction between neighboring spins and rewrite the amplitude in eqn. (1.4) as

3 Y e T Tlmen ) Tl (1.7

et
a, ~t1 o, t1

with spins £ and 1 held fixed. To reproduce the path integral to O(d7) we need an

sxpression for 17 which reproduces the matrix elements in eqn.(1.5). By inspection the

ANSWOT 18 ,
(s, 1,)* (8, 1 8,)

1 2

(1.8)



where in a SM system with s; the spin at site 1, 3 would be the nearest neighbor coupling
and h the magnetic interaction. In eqn.(1.7), setting f = i and summing over ¢ gives

Z = EZE e TGen) | = T(a1si) (1.9a)

the partition function for a 1 —dimensional Ising system with periodic boundary conditions
with T given in eqn.(1.8).

One purpose of defining the path integral in terms of T, eq.(1.7) was to introduce the
transfer matrix e~ 7. T is the Hamiltonian for discrete Euclidean time measured in lattice
units; ¥ = limgr .0 37;,, The definition of § and h has to reproduce the matrix elements of
eqn.(1.5) and satisfy the definition (fle~T|s) = K(f,i). A necessary condition for this is
that T be proportional to é§r. This is satisfied by

- . (i —85)° (si + ;)
Z = X‘:E,_:%‘ GXP(—6TE[*GO/\———4— + a0—2—’]) : (1.90)

Note that each term of the sum in the exponent is the discretized Euclidean version of
the Hrmiltonian in eqn.(1.1). This association of the transfer matrix as the discrete time
evolution operator is an alternate route to go directly from QM to SM.

This completes a demonstration of the first connection; the relation of the partition
function to the QM amplitude Y, ¢(s,1) and the path integral. [n fact the partition
function in SM is equivalent to the generating functional in QI T.

Let me now show the foliowing relationships: 1) the free energy in SM corresponds
to the ground state energy in QM; 2) correlation functions <=3 time ordered expectation
values and 3) correlation length <= reciprocal of the mass-gap. These are true in general
cven though they are derived for the simple 2-state system.

For small A, eqn. (1.9) for f = 1 reduces to

in the limit 87 — 0, N6t » r. 7 is the partition function for the two sta‘e system. For
T 00,

1
—InZ = freeenergy - aqn (1.10)
1

since only the ground state contributes to the sum in the partition function.

Next consider the time ordered product

(.l'l'[n:,(r)n_-l(l)]h)

)



3]

where 0:(1) is an operator in the Heisenberg representation. Using eqn. (1.3) we get

(24
o

~ ZZ (f]e“H's"lsn)...agls,}(s,]...aglsl)(slle'_H6’li)
= 3 ) sesy (fleHE s (sal e (si]e”Hom5)

since |s;) are eigenstates of 03. Now it is straightforward to repeat the steps between
eqns. (1.3) and (1.8) to get the second relation, correlation functions <=> Euclidean time
ordered expectation values

1|T[os(r)o3(1)]}2 1 : Tlrs T (e,

(sy81) . (1.11)

14

To show the last relaticn, insert a complete set of states of ¥ in eqn (1.3) rather than
ol a3. Let |0),]1) Le the ground state and the excited state with enegy Eo, F; respectively.
Then

(i[1]os(r)7a(1)]}9)
(ile= 713
1

= —mr | [(0lo3]0) 1P e+ (tfosi1) [ 7B +

(8r81)

(Ojos|) (2 (e=Bolr=rI=Fur 4 = Bulr=r)=Bur) |
In the limit of large 7, the leading terms on the right hand side are
(3,81) > 1(0los|0) * + |(Oloa1) | e~ (Es=ED)" (1.12)
For a theory with a non zero mass gap m = (E, — Ep), the second term controls the

~xponentiai decay of the correlation functions at large distance. In SM, such an exponential
decay is characterized by a correlation length &:

=m = (ElnEo) . (1.13)

m| -

If the first “erm in eqn (i.12) is non-zero, then for r —» oo the correlations do not go to
rero. ‘The system is said to have long range order. In our simple examgle, the o4 term in
¥ tends to align the spins i.e. acts like a magnetic field as shown in eqn (1.8). Its presen-e
hreaks the up down symmetry of the states (which exists for ¥ x o). Thus (0lo4]0) /0.

So, in this simple example, o4 i3 an operator that ~xplicitly vicaks the symmetry.
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In QM, interactions are characterized by non-zero off-diagonal matrix elements. If O
is any operator that causes transitions between eigenstates of X, then

@02 # (1)0%) . (1.14a)

i.e. the system has quantum fluctuations. In SM, an analogous statement is applicable to
correlation functions in the canonical ensemble

(0) # (0%) (1.145)

t.e. states with different value of O contribute to the sum in the partition function. Thus
fluctuations are essential features of both quantum and statistical systems.

Having built up the formal analogy between QM and SM, let me next formulate and
solve the harmonic oscillator problem as a warm-up exercise.

1.2) The Harmonic Oscillator

The essential concepts and necessary backgrcund that readers should be familiar with
are given in chapters 3, 8, and 10 of Feynman and Hibbs (8].
The Lagrangian for a SHO in Euclidean time 7 is

L = -’zﬁ(i2 + w?zr?) (1.15)

The quantum amplitude is given by the path integral
K(y,T,I, 0) =1 / " D:E(T) f.—‘ fo E(I,i‘,l)dt (116)
paths

i.e. each path from (z,0) to (y,7) contributes with weight e~ where § is the action. For
the SHO, the kernel can be solved for in a closed form

mw mw
K(y,7,2,0) = (m)* exp{—m[(zz+y2)coshwr - 2zyl} . (1.17)

To et up the problem for numerical analysis, consider the evolution for infinitesimal time

K200 ~ (/5 exp{ - [(F=)" + AT

z € 3

In analogy with eqn (1.7), regard K as a Boltzmann factor specifying the interaction
between points at two adjacent times. This interpretation of the kernel as a probability
can be used to generate the paths.

For the SHO we are able to write a closed form expression for K. In general this is not

possible. One then uses the alteraate way to go from QM to SM; by defiting a partition



function with the Transfer matrix playing the role of the standard Boltzmann factor. For
example note that by taking the discrete version of £ given in eqn. (1.15) we reproduce
the exponent in eqn. (1.18). In this discretization, Euclidean time is treated as an extra
dimension. The kinetic energy term in ¥ connects variables in this extra “time” dimension
and the potential energy terms prescribe the spatial couplings. In general, a d-dimensional
QM system is represented by a (d + 1)-dimensional SM system. In the remaining part of
these lectures, this will be the implicit route.

The only restriction to setting up the path integral for numerical simulations is that
K should be interpretable as a probability. This is guaranteed if the action S is real and
positive definite (more specifically bounded from below so that the measure is normaliz-
able). If we can regard K as a probability then we can generate a series of co-ordinates z,
at time (0 + ne) for n = 1,V with some starting xo. This discrete series of points form a
path on a lattice of spacing €. The steps to simulate the path integral are

choose some o at r = O;

(a)
(b)
(c) generate z,,, from z, as in steo (b) for N time intervals where (Ne = 7);
(d)

generate z; at 7 = ¢ with probability K given by eqn.(1.18);

repeat steps a) to c) infinite number cf times.

The path integral is calculated from the infinite set of all possible paths between
(z,0) and (y,7) with their respective weight ¢~ (shown graphically in Fig.1.1) . Note
that changing the oscillator parameters m and « does not change the paths, it changes
the weight associated with a given path. This will remain a key concept as we go from a
single particle system to NV particles to QFT.

Ay

b N Ok 6

<

Fig.1.1: A sc* »f illustrative paths for the SHO.

Given the paths, ail quantum mechanical expectation values at some time ne are
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calculated as simple averages over the distribution of z;:
1 X
(@) = 2 2.(0) (1.19a)
4 . 1

..
I

or the 2—point correlation functions

2|~
=

—

(TrZrime) = zi(7) zi(T + me) (1.19b)

iz
where the average is over the N -+ oo paths (path integral) generated by the above
procedure. The first average, eqn (i.19a), gives the expectation value in the ground state
while the 2-point function, eqn (1.19b}, (n-point functions in general) provide dynamical
information.

If we choose the starting zo witi a distribution h[:o|2 i.e. the ground state probability
distribution, then the expectation value in eqn (1.19a) is the ground state expectation value
at all time slices (no 7 dependence). Otherwise, if we start with a random distribution
of zo which has a ron-zero overlap with the ground state then we need to discard some
number of time steps before measuring expectation values. In this latter case we rely on
the exponential damping to remove the higher states. To calculate the expectation values
in some excited state, we need to choose a distribution of zo that is orthogonal to all the
lower states. Thus, the starting distribution of zo plays an important role in the evolution
in two respects. 1} To project onto a4 definite eigenstate 1, the distribution of starting zo
has to Le |¢(z)|2. 2) If the starting state is not an eigenstate then after a certzin number
of time steps (which depends on m, w and ¢€) only the iowest state consistent with the
symmetries of starting zo survives due to the exponential damping.

The above discussion implies that the distribution of z; generated on any time slice is
]wo]?‘ if the starting distribution of o is ¥o. This at first glance scunds fishy - we have so far
been talking about the quantum amplituds and now suddenly there appears a probability.

To understand why recall two facts - the law of composition of kernels (amplitudes)

K(y,z) = /K(y,z) K(z,z) dz

ana that the kernel is an evolution operator, so in the language of a complete set of energy
cigenstates ¢

Klyz) = 3 e 57 dily) ¢(z)

S P a) [ 65(008,02)dz 810

which shows that if we evolve an eigenstate ¢, then the distribution of z at any intermediate
time has weight ¢°¢. Thus the expectation values we calculate in eqn. (1.19) are the
analogues of [ 1"¢*(r)¢{zx)dz.

9



In case you are wondering how the amplitude 1 will acquire the expected e " behav-
ior since none of the paths terminate (the distribution of z is the same on all time slices),
let me outline how this damping is built up in an actual numerical algorithm. To select y
from z using eqyn (1.18) one procedure is tc generate y with probability

P(y) = exp [—%W(I——y)z] : (1.20)

and then accept or reject this y with prebability

mew? (22 + y2 + zy)}
2 3 -

To get the correct normalization, i.e. in order to generate y according to eqn (1.18), the

1 - exp[— (1.21)

accepted y have to be weighted with

1 mwle 5 (1436312 |
1+ =5~

It is this last factor that builds up the e £7. As an exercise show that you need the weight

factor in eqn (1.22) to get the correct normalization of eqn (1.18), once y is generated by
eqrs. (1.20) and (1.21).

2) FIELD THEORY ON THE LATTICE

2.1) A¢* Theory in 4-dimensions

In the previous two examples we saw how to 't up the path integral and calculate
the correlation functions for 0 — d QM systems. Ne- . I am going to jump to the simplest

field theory in 3+1 Euclidean dimensions —— scalar A¢*. The action on the lattice is
S =) [~xwo'2)d olz+i) + 162 + Als(z)]* - 1)?] (2.1)
z 1

which as stated before is the Boltzmann tactor with which to generate configurations. Here
we are going from QM to SM via the Transfer matrix. The standard continuum action is
obtained with the fcllowing correspondence

. = V2r ¢ (v 2a)

m? = g—l—:l{)—wﬂ (2.2h)
K

Ae = '—?)« , (2.2¢)
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@ is 4 real valued variable (in general an n — tuplet for an O(N) 1nodel) at each site on
the lattice. A path / onfiguration) is defired by specifying the value of ¢(z,,z3,z3,z4)
at all points on the lattice. The path integral is calculated from the set of all possible
configurations. Correlation functions (probes of physics) are calculated as simple averages
over these configurations with their respective weights as discussed ip section 3.1. The
weight of any configuration in the functional integral is e~ 5.

So conceptually and operationally it is very easy to set up the path integral. The
bottleneck in simulations is that implementation can be (and is for QCD) prohibitively
expensive. Some of the reasons are: 1) the need for large lattices, 2) small signal to noise
ratio in observables and 3) slow evaluation of § especially when dynamical fermions are
included. I hope these facts shall become clear in the following lectures.

A technical aride; the lattice need not be symmetric i.e. “he lattice spacing in the
space and time directicn can be different. To get a field theory we are interested in the
litnit 6z — 0 and 67 -+ O (see section 3.1 for why). Thus one can cousider two limiting
processes: 1) The Hamiltonian lim.:; the spacing in the time direction is taken to zero
first keeping the spatial spacing fixed. This gives a discrete Hamiltonian system with
continuous time. The limit 6z — 0 is taken next. 2) the Euclidean limit; the spacing in
the spatial and tiine directions is kept equal i.e. 6z = é7, and the continuum limit is taken
preserving this symmetry. Which is the better method to approach the continuum limit
depends on the model and the particular observable being calculated. The phvsics is the
same. To illustrate this consider a correlation length in a 2 — d model. In the Euclidean
approach £ is approximately isotropic barring lattice artifacts for small £, As 67 is made
small compared to 6z, the constant £ circle distorts into an increasingly eccentric ellipse.
Measured in lattice units { seems very different in the two directions. However, converted
to physica! nnits it is again roughly isotropic (there are some quantum corrections).

In these lecturaes [ will restrict the discussion to the symmetric Euclidean formulation

unless otherwise specified. This Hamiltonian approach is explained in more detail in section
5 of Ref. [4].

2.2) QCD on the Lattice

The lattice is a (3 + 1) dimensional Euclidean grid of side 1. with spacing a. Our
goal is to define the ficld variables on the lattice and with them construct an action which
reduces to the familiar continuum form §Fu, F#Y + ¥v,(9u + 19AL)Y in the limita 0,

The fermion fields are functions of space time points and are defined at cach site on the
lattice. Hoewever, they are Grassmann variables for which we have no direct representation
that is amenable to numerical simulation. The solution is to intergrate them out since the

fermion actior, is bilinear. Unfertunately, the resulting coupling hetween the gauge degrees

11



of freedom becomes totally non-local. This, as will be discussed later, is a bottleneck in
present calculations.

The gauge fields carry 4-vector Lorentz indices and mediate interactiors so they are
not associated with the sites. To define them, recall that in the continuum a fermion
moving from site z to y in presence of gauge fields A,(z) (= A4 - Aj(z)) picks up a path
oriered phase

viy) = Pef:l'gf\u(z)dzu ¥(z) . (2.3)

This suggests that gauge fields live on links that connect sites on the lattice. So, with 2ach
link is associated a discrete version of the path ordered product

Ulz,z+ i) = Uy(z) = e9Aulz+h) (2.4)

where a is the lattice spacing. For concreteness, we shall deiine the field A, to exist at the
midpoint of the link. Also, the path ordering in eqn. (2.3) specifies that

Ulz,z - 4) = eterA(z-8) Utz - u,z) . (2.5)

The dimension of U is specilied by the representation of color SU(3) to which the fermions
are aseigned. Unless otherwise specified we shall assume that it is the fundamental repre-
sentation. Then U is a 3 x 3 unitary matrix with determinant one.

The local gauge freedom acts on the sites. Under a local gauge transformation V (z)

w(z) — V(z)¥(2) (2.6a)
¥(z) — $lz)V(z) (2.66)
Uu(z) — V{(z)Uu(z)V'(x + i) (2.6c)

where V (z) is in the same representation as the U 1.e. it is a SU(3) matri-.

|

I

!

[ > l
B

Fig.2.1: The two gauge invariant quantities. a) Anordered string of U's capped by fermions

and b) closed Wilson loops.



There are two types of gauge invariant objects one can construct on the iattice: a
string capped by a fermion and an antifermion (fig. 2.1a)

¥(z) Uulz) Uu(z + ). . Up(y = 5) ¥(y) (2.7)

and the trace of any closed Wilson loop; the simplest example is a plaquette —a 1 x 1 loop
(fig. 2.1b)

1 ,
Wi = = RTr (Un(z) Uz + 4) Ul(z +9) U () (2.84)

but, in genera!, any closed loop in any representation of color SU(3) is allowed. Here N
is the number of colors and R is the real part of the trace. The imaginary part an be
used to probe electric and magnetic field strengthe since it is proportional to Fj,,. As an
exercise convince vourself that there does not exist any other independent gauge invariart
quantity.

The lattice action for QCD should ve expressed in terms of these two gauge invariant
quantities. Consider the simplest string in a forin chosen with hindsight

V(2)1lUn(2)(z + 4) = Ul(a - &) $(z - 4)]
and expand in powers of the lattice spacing a. Keeping only terms to O(a) one gets
= F()l (1 +iagAu(z + B) wla + ) — (1~ iagdu(z - £)) vz &)
Now Taylor expanding about z
= B alle +8) bz~ B + iagB(z)nlAu(e) - S0, Au@IW(E)  ed,u()
+ iagB(a)nlAu(@) b 50w AN B(x)  adu(s)]
gives to O(a)

2ay(2) 7, 0,%(z) + 2azd(z)v,Au0(2) = 2aP(z)v,(0u +igAL] ()

This is the standard (Euclidean) continnum fermion action. For the gauge action, [ will
work through the simple abelian model (in this case the I/ are commuting complex num-
bers) and leave the non-abelian case as homework (see seciion 3 of Ref. [4] for details).
The steps and the final functional form (up to numeric factors) are the same for QCD,
except that the non-commuting A matrices make the algebra longer. Lets cousider the

simplest Wilson loop the 1 < 1 plaquette:

Ui U e o) () =

v

. ) /AL N IA/ . /AL ['/
cipliag (A, (r i 2) AL 2) Au(r oo 2) Au(r 2))]

13



Expanding abouty = z + &}D- gives

= exp [ia%¢(8,A, — 8, A,)|

a492

~ 1+1ia%gF,, — F.,F* + O(a®) + ...

Thus
4.2

(1-W,,) = azg FuuF*Y + terms higher order in a (2.8b)

since the real part of the linear term is zero. So far the indices u and v are uncontracted.
There are 6 distinct positively oriented plaquettes, 4 < v, associated with each site. Sum-
ming over u,v with g # v and taking care of the double counting by an extra factor of -;-,

1 a‘ X 1 i A v
?Z Na-w,) = —[Z)_‘ﬁww" - X/d‘zl*,wF“

L 3% T u#v

we get

To low.st order in a, we have again recovered the continuum action.
The simplest lattic e action for a non-abelian theory is {number of colors N > L }:

A=Y u-wa)

gz Tu#u
t % >V nlUu(@)e(r + i) ~ Ullz — i)p(z ~ @)
Fmy 3 HE)E) (29)

which in addition to gauge invariance has the following space-time symmetries:

1) Translations by !attice spacing a.

2) Rotations by 90°. The rotation yroup reduces to the discrete hypercubic group.

3) Reflections about sites (z,, -+ -r,) and about tha planes.
These symmetries become the full Poincaré group plus reflectiona in the continuum limit.

Given the uction in eqn.(2.9), the important question is: what are the corrections to

mbservebles at finite lattice spacing a? In eqn.(2.8b) we saw that corrections in the gauge
part begin at O(a?) (as a homework assignment show that a general fermion action has
corrections starting at (J(a)). The corresponding operators are called irrelevant because
they vanish in the limit @ + 0 but on the lattice they give rise to scaling violationa, These
can be large if a is not small as is the case in numerical simulacions. T will disenss sealing
(the necessary condition for getting continuum results from the lattice) in lecture 3.2 and

outline an improvement program for pure gauge theory next,

2.3) Improved Gauge Actions



All Wilson loops (of size s X j) have an expansion similar to eqn. (2.8b). The generic
form, including the next to leading continuum operators, is

1

aT(l—W(ifj)) = CO(’.,J.)ZF#UF;AV
uv
+ az[Zc%(i,j)D“F“u DuFuv + ch('.sJ')Dqup D,F,,
vy uvp
+ ch(i’j)Dqup DuFup ] + .. (2.10)

Bvp

Only the numeric coefficients ¢$(5,7) depend on the particular loop. Since the higher
dimension operators are accompanied by powers of a, all lattice actions reduce to the same
form in the limit @ — 0 (which defines the physical theory). There is no unique lattice
action corresponding to a given continuum theory. For a # 0, the physical quantities
calculated with different actions have corrections of O(a?) with coefficients that depend
on the ¢(1, 5). For fermions the corrections begin at O(a). To reduce these corrections we
can exploit the freedom to add any number of gauge invariant terms to eqn.(2.9), i.e. add
arbitrary shape strings to the fermion part and Wilson loops of arbitrary shape, size and
representation to the gauge part [9] . Then by a successively more complicated linear
combinations of terms in the action we can cancel all O(a), O(a?) ... scaling deviations in
nhservables at finite a. Thereby we have used the arbitrariness of the lattice action into an
asset at the expense of a more complicated action which is harder to simulate. The hope
is that significant improvement is obtained with a few local terms. Systematic programs
to calculate such “improved actions” are being investigated and for ‘details see refs. |10)

[11] .
2.4) Fermion Actlons and Simulations

Fermions anticommute, so they cannot be simulaied directly. The standard procedure
i to integrate them out. The formal identity that allows this is

/Dg{) Dy VMY det M /Dds Dpt e ofM (2.12)

where M (D + m) ia the Dirac operator and ¢ are ordinary numbers called pseudo-
fermions. The partition function for QCD in Fuclidean space can then be written in a

nuimber of equivalent forma:

A /l)!/'l)dltl)(/ erp(Se, + w(lD )i (2.13a)

VA /I)U det(ID + m) erp(S.;) (2. 13h)
1
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Sc is the gauge action (which for present we shall take to be the simple Wilson action).
D is the fermion covariant derivative, and m the quark mass. Either form (2.13b) or
(2.13c) can be simulated, but each requires the calculation of a non-local quantity. So the
bottleneck in fermion simulations is that a direct evaluation of either det(]p + m) or B—l—m

is prohibitively slow. The simplest appro cimation -called the quenched approximation - is
to set det([) + m) = 1. The gauge configurations then do not include the effects of vacuum
polarization. The best interpretation of this approximation is that dynamical quarks have
mass m = oo, '

The lattice formulation of fermions (definition of operator M) is still not satisfactory.
The problem with the naive action in eqn.(2.9) is that in the continuum limit it corresponds
to 16 rather than one flavor. In each of the d-dimensions, the propagator has a pole at
pu = 0and 7 i.e. at each of the 24 corners of the Brillouin cell. This can be seen by looking
at the inverse of the free field propagator

M(p) = m, + iz'y,‘ sin py (2.14)
m

in the limit mq -+ 0. This proliferation of flavcrs is unacceptable. Since the latiice uction

is not unique, we can play around with the iermion action for cures (for example add

irrelevart operators). Before doing that let me first state some important properties we

wish ideal lattice fermions to have:

|1, There should be a well defined chiral limit for all g. \

|2] For a single Dirac fermion, there should be only one lattice fermion. The spin and
flavor degrees of freedom should have one tu one correspondence so that continuum
operators can be transcribed straightforwardly onto the lattice.

|3] The continuum flavor symmetry in the massless limit is Uy (1) x J4(1) x SUy (ny) x
SUa(ng). The Uy (1) is baryon number conservation and is not broken. The I7,4(1) is
broken by instanton contribution and the tlavor singlet axial current is anomalous. T'he
SU(nyg) < SU(ny) is spontaneously broken to SUy (ny) with goldstone bosons (pions)
associated with the broken gencrators. We wish to rotain these chiral symmetries in
detail.

[4] The fermion action should be local i.e. it should couple sites within a small neighbor-

hood only.

Clearly, I would not even be harping on the issue if lattice regularization did not
drastically effect the fermions. A theorem by Nielsen and Ninomiya [12] states that for
alocal fermion acticn a continuons chiral symmetry is possible only at the expense of
fermion species doubling, So far there v no formulation of lattice fermions that preserves

chiral symmetry and a one to one correspondance with continuum spin and flavor degrees
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of Dirac fermions. There are two popular formulations — - Wilson and Staggered -—
that provide a partial fix. Each has its advantages and disadvantages. Here I will only
catalogue their main properties.

The fix that Wilson proposed was to add a higher dimension operator which gave
fifteen species, p, # 0, a mass proportional to i— [13] . These decouple in the continuum
limit except for their contribution to the triangle diagram where they act like a Pauli-
Villars regularization to produce the correct anomaly. The Wilson fermion (W F') action
is

MUi; = 8 + &) [(w—r)Uipbiju — (v + 1)UL, L6050l (2.15)
s

where the Euclidean v matrices are hermitian and satisfy {v,,7.} = 6.,,. A common
representation is

. (0 ¢ {1 0 (0 1 .
v (»‘a‘ 0> 1= —»1> L (1 o> ‘ (2.16)

Due to the r term, the free propagator

M (p) = (2.17)

12 Y0, (r cosp, 17, sinp,)
no longer has poles at p, = m. Note that the operator M is not hermitian but satisfies
ysM~s = M!. The same relation holds for M ! also.

Wilson's fix has a drawback; chiral symmetry is explicitly broken. Fven defining the
quark mass is not straightforward. In the limit @ + 0 (free fermion theory), the quark
mass is given in terms of the lattice varameters by

1  Bkr

m
4 2K

(2.18)
so we know how to tune it to zero. Away from a 0 we have no a priori knowledge of
how to take the zero mass limit. The best we can do is to calculate the pion mass as a
function of x at fixed ¢, determine (by extrapolation) the value of k= x. where it goes to
zero and call that the zero mass limit. In doing so we have had to explicitly assume the
chiral behavior m?., o . Note that this determination of k. is statistical, On a given set
of configurations, the zero mode occura for & in a range about x.. So, in addition to the
lattice size, thin range limits how small a quark mass can be probed at a given ¢.

Let me give a couple of consequences of the lack of chiral symmetry; 1) if we caleulate
Gy in perturbation theory, it does not vanish at «.. Thus, in order to define the physical
iy we have to subtract the perturbative answer in addition to non-perturbative sub.

tractions. 2) Operators of different chirality mix in the Callen Symanzik equations, This



is true even at .. An example where this is relevant is the calculation of strong interac-
“ion corrections to weak interaction matrix elements. For a expdse to the operator mixing
problem see Refs. [14] [15] . Further, one needs the spontaneously broken SU4(n ), which
give rise to certain ward identities, to derive the chiral behavior of matrix elements of the
4-fermi operatcrs. In this respect Staggered fermions (discussed below) are better.

The advantage of WF is that spin and flavor degrees of freedom are identified with
continuum Dirac fermions. So it is ezsy to construct interpolating field operators.

The staggered fermion x (SF) [16] has only color degrees of freedom at each site
i.e. no spin. The matrix M is

1
M{Ul;; = méi; + 2 Z N [Ui.uém'—u - l]tr-u,p.&‘.‘]'Fl-‘] (2.19)
m

The SF action has translation invariance under shifts by 2a due to the phase factors
Mo = (~1)2owes 0 (2.20)

Thus a 2* hypercube is mapped to a point in the continuum limit. The 16 degrees of
freedom in a hypercube become the four spin compor ents of four degenerate flavors. On
the lattice, these spin and flavor Jegrees of freedom wre rnixed up. Worse, the flavor
symmetry is broken and we have no a priori way of knowing the value of ¢ at wuich it is
dynamically restored to a desired accuracy (in Monte Carlo calculatione this value of ¢ is
estimated hy requiring that the 15 goldstone modes becoine degenerate). This mixing of
spin and flavor is the major disadvantage of staggered fermions.

SF have a well defined chiral limit at m = 0 for all g. This action alsc has a remnant
continuous {/ (1) chiral symmetry which is sufficient to derive Ward identities like in the
continuum [17] . This is the major advaniage of staggered fermions over Wilson fermions.
So by retaining only part of the chiral symmetry, SF reduce the doubling problem to four.

The operator M is not pasitive definite (for example in the limit v+ 0, M! M

in eqn.(2.19)). So in numerical simulaticns we use Mt M. However, since
/D¢ Dp* e *MM bt M det M! (2.21)

therefore using MM leads to a doubling of flavors. For staggered fermions this doubling

ix removed by noting that

tw
tw
to

/D,p[w e GHMYM) Tee i A det A (2.

where ¢, is defined only on even sites and has no spin degrees of treedom. Se one s
left with the original 4 fold degeneracy. Thus simulations of SF are most nataral with

multiples of 4 flavors "18) | while those with W F in multiplss of two flavors,
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The basic building block of fermionic operators is the quark propagator M~!. For
example consider the 2-point correlation function for a #*. Using W F and making a Wick
contraction gives

((dyeu)r (Tysd)o) = (M™H(r,0)7sM~1(0,7) s

where the average is over background gauge configurations. This correlation function is
shown in Fig. 2.2 and is ea: " to evaluate once M is inverted.

- B
»

<

Fig.2.2: The pion correlation function in terms of quark prnpagators.

A fast algonithr. for ratrix inversion is crucial to both update and diagnostics. For
a comparison of inversion algorithms for WF see [19] . For S7, straightforward con-
jugate gradient algorithm seems optimal at present. We desperately need ar aigorithm
improvement.

2.5) Numerical Measurement Techniques on the Lattice

There are three vvays to do the path integral:
(1] Generate configurations at random, calculate the correlation functions and the weight

for the configuration. Then bulk averages are given by
N
m):NLQc& (2.23)
1

with O, and S, evaluated on each configuration . This random sampling method
is inefficient and in a finite sample it is easy to miss important configurat ons all
together, It is therefore not used.

Generate configurations by importance sampling t.e. according to the weight ¢ °

The expectation value is then a simple average:

te
T
-—

/

I N
(0 N\q (2
ed
1

This is the method used in practice and for details see refs. [5] and f200
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(3] The mixed approach: use the highly fluctuating part Ss of § in an iriportance cam-
pling algorithm and the smooth part S, (whici* is difficult to evaluate) as part of the
average.

N
(0) = %Zf‘wc—s' (2.25)

This method has not had any success in QFT because of our lack of ability to do the
appropriate factoring. In a different context (her: I am getting i.head of myself) for
a complex §, which cccurs in QCD with finite chemical potential, updating using the
absolute value of $ and incorporating the phase as part of the observable does net
seem to work because the phase has large fluctuaiions [21] .

At the ond of section 2.4, [ gave an example of th« interpolating operator for the pion
and the reduction of its 2-point correlation function in terms of M ~!. Similarly, all other
fermion correlation functions are constructed from M ~! after Wick contractions. Let ne
now give an example of a pure glue operator for the 0%+ glueball mass:

O(T) = Z Wi.]'(xl)r2)1:3»7') (2.26)

T),T32,%3 o‘(]

where W is any Wilson loop. Recall from eqn.(2.10) that ali Wiilson loops ha.e an overlap
with F,,F,,. The sum over sites on a time slice 7 projects 0 ontc zero-momentum and
the si.:n over spatial orientations ¢ < 7 makes it a scalar (in general & multiple of spin 4).

The higher spin contamination, we kope, is suppressed by a large mass-gap between these
states.

[ have already shown that correlation functions correspond to expectation values of
time orlered products of operators. l.et me now show how mass-gaps (proton, rho, pi ete.
masses) are measured. Consider the amplitude

($10(1)0(0)ls) = (ol I (6100 (T 19(0)ls) (2.2

where O is the interpolating field operator and |s) are the eigenstates of the ‘Transfer
matri<. Then O(0) can either create or annihilate a quanta at time O while 0(7) does the
reverse. Rememberiny that the time evolution of the statea ~ ¢ ¥7 the two dominant
contributions to eqn (2.27) in the limit of large r are

0]0(r)O(0)|0) ~ e ¥T
(1[O(r)O(0)[1) ~ e KO- )

where [, is the size of the lattice and F is the mass-gap. 1'he lattice has periodic boundary

conditions and the energy of 10) is set to zero. Thus the behavior f the 2 pont correlation
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function in the large 7 limit is

(0(r)0(0)) ~ e BT 4 ¢~ E(L-T)

~ cosh E(g— -7) (2.28)

So if the data shows a cosh E(% -- ) behavior for large L and r, then E can be extracted
from the fit.

For a reliable estimate of “ne mass of a given state we need to do the following:

(a) The operator O shou ¢ the state at zero momentum. This is usually accom-
plished by making the tor translation invariant i.e. 0 = Y O(z).

(b) Choose an operator that couvples to a single state. This is in principle hard if not
impossible. For example laitice operators that couple to a pion also couple to all
radial excitations as well. So the attempt is to maximize the overlap with the lowest
state. This can be done by muking * a variational wave-function. The method
then provides information about the wave-function of the state once the variational
parameters are tuned.

(c) Make L and 7 large so that even if there is a contamination in O [rom higher states,

the corrections are negligible due to the exponential suppression of higher states at
large 7.

We will discuss how well these points are under control case by case later.

2.6) Tinite Temperature QFT

The connection between tirne of propagation of a state in Euclidean QF T and temper-
ature in statistical mechanics is very profound. The quantum eigenstates have a tirne evo-
lution exp( F,7), so the relative contribution of higher energy states is exp(- (F, - Fy)7)
(they are not damped out for finite time propagation). Thus each state in the sum over
states has the correct Boltzmann like facter to allow an interpretation of 7 as inverse tem-
perature. [n short, a system in a finite box in the “time” ditection is at finite temperature.
This is the basic idea of finite temperature QFT (see Ref. [22] for a review).

To do QCD calculations at finite temperature, we laber one direction as time and take
a finite number N¢ of latice points along it. The temperature T of the system is then given
by T VI.T where a is fixed by g. The boundary conditions in the time direction should
be periodic (anti) for bosons (fermions). In the spatial direction the boundary conditions
can be chosen to be whatever mimics infinite volume best. To vary the temperature, one
fixes V¢ and changes g continuously to rhange the scale a. The continuum behavior is
obtained when Ny is large (i e. a is small enough so that scaling has set in) and the spatial

voluine is “infinite”,
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To calculate the zero temperature behavior of the theory, the smallest lattice dimen-
sion N has to be large enough so that e~ (E1 =Fo)N ig negligible. In practice lattices are
finite, so all physical quantities are measured at small but finite temperature. The T = 0
limit is gotten by extrapolation. For a sensible extrapolation there are two prerequisites:
1) There should be no singularities (finite temperature phase transitions) as N is increased

and 2) there exist some functional form to match on to at large V.

3) SCALING, CONTINUUM LIMIT AND EFFECTIVE THEORIES

A fundamental QFT is one for which the limit a — O can be taken self-consistently.
In this limit the theory is non-trivial (interacting) if the renormalized couplings gg are
non-zero and finite. The lattice serves simply as a regulator. To extract physical numbers
froin a given lattice theory we need to know 1) the gsqr. at which to take a — 0 and 2)
how this limit is approached so that one can extract sensible numbers working at finite
a. In this lecture I will discuss these points with simple physical observables like hadron
masses as examples.

As discussed in section 2.5, the mass m of an excitation of the theory (states) is
measured from the exponential fall-off of the 2-point correlation function. The correlation
length (measured in dimensionless lattice units) is

€ = (3.1)
where m is expressed in GeV, and a in GeV ~!. The mass of the physical state is given by

ny o= l% m(a) (3.2)
which remains finite as a — 0 for a fundamental theory. The continuum theory is defined
at points where £ — o0o. As in statistical mechanics, points at which correlation lengths
diverge are called critical points. It is easy to see that at such points the correlation lengths
of all physical excitations — co. A finite correlation length £ is possible only if m(a) -+ oo
as a -+ 0. Such states decouple from the theory.

So to have a fundamental QFT that describes nature we require the following:

(a) There exist at least one non-trivial fixed point of the theory. A fixed point is a special
critical point at which the theory becomes scale invariant.
(b) In case the theory possesses many distinct fixed points, the relevant one is that about

which the mass-ratios agree with nature.
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(c) Universality: The fixed point governs ihe physics (mass-ratios) in a certain neigh-
borhood about it. Said another way, all actions (in the infinite dimensional space of
coupling constants) about the fixed point yield the same long distance behavior with
corrections that vanish as powers of a. Thus we can make simulations away from
£ = oo and successively decrease the error in a controlled fashion. For QCD, our
optimistic hope (bufiered by some numerical evidence) is that this region extends to
ghare = 1 where the correlation length is =~ 10. So realistic calculations are feasibie.

In general, a theory is non-perturbative about its non-trivial fixed poiats. There is one
notable exception —— asymptotically free field theories (AFFT). They have a non-trivial
ultraviolet stable fixed point at gy, = 0. The point gpe,e = O is always a fixed point,
but it is usually a trivial fixed point because the theory reduces to a gaussian model at
this point (¢ = 0 => no interactions). What distinguishes an AFFT from a trivial gaussian
model is that for AFFT, gr tends to a nonzero constant as gpqre — 0. This completes our
first goal which was to id=ntify the relevant fixed point.

The advantage of AFFT is obvious: Near this fixed point perturbation theory is valid.
Thus one can calculate how n-point functions change under a scale change. This evolution
is described by the Callen-Symanzik equations. The simplest of these is for the coupling
constant g

dg(a)
_ 3.3
22 = —p(o(a) (33)
where ((y) is called the S-function. For non-abelian tu~nries, pervurbation theory gives
Blg) = —Bog® - B + - (3.4)
Only the first two coeflicients, o and f5; are repularization scheme independent. They are
iIN - 2n;
= ———_—— 3.5
Bo 3+ lon? (3:5)
34N?% — 1ONns — 3ns(N?% -1
B = ny = Sng(N7 - )/N (3.56)

3% (1672)2
where N is the number of colors and ns the number of quark flavors. Thus, the 3—function
ic negative for the anticipated 6 flavors in the standard model. Because of this important.
property, ¢ —+ 0 as a — 0 and the fixed point at gy,,, = 0is ultrzviolet stable (for details
sce lectures by J. Rosner in this volume).

At gpare = 0, the correlation lengths diverge. Lattice simulations have to extrapolate
from finite a. This extrapolation is called taking the continuum limit. By consistency,

we take the limit a -+ 0 holding some physical quantity constant (the proton mass for

example). Let my, ma be the dimensionless mass measured on the lattice. Then
:lm,, da oo
—l m— . (3.6)
dg dg
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Holding m fixed prescribes how a varies as ¢ - So when one measures my at a number
of values of g, it changes bec..use a (an arbitrary nit) changes. Such measurements give a
non-perturbative answer for the relation betwe:n a and g. But how do we know it is right
and how do we extract physical masses?

Integrating the 2—loop S—function, eqn (3.3), tells us how any dimensionless mass
(measured in lattice units) should change with g for small ¢

1 )-s’%'r " 1 |
e —— ————
Bog? PL™ 2Bog?

ma = cf(g9) = ¢ (3.7)
Eqn.(3.7) holds for all physical observables with dimensions of mass. Only the constant
¢ is differe So once the mass measured on the lattice starts to change according to
eqn.(3.7), eqn. (3 3) and (3.6) agree up to some predefined error criterion, then that
interval [ga.y, 0] is called the asymptotic scaling region. The constants ¢; are extracted
from a best fit to mz/f(g).

Having gotten the ¢;, we still do not have a physical mass since f(g) is arbitrary at
least up to a multiplicative factor. However, their ratios are well defined and specify the
spectrum of the theory. If these numbers agree with experimental values then we have the
right theory.

Another approach is to define an integration constant A = —-gﬂl with f(g) given by
eqn (3.7). Then m; = c¢;A in the asymptotic scaling region and all dependence on gyar.
and the cutoff a is hidden in A. This integration constant provides a scale and corresponds
to defining gn, the one unknown parameter of the theory. QCD, ignoring quark masses,
has only one dynamically generated scale. To fix A in physical units (MeV), one relates
it to a continuum definition like A5 by one loop perturbation theory and then uses the
experimental value for Agzz. Of course by reversing the argument one could predict Az
provided all calculations are done at small enough g so that perturbation theory is valid.

The replacement of the coupling constant by a momentum scale A is given a fancy
name —— dimensional transmutation. The idea is neat; we started with a scale invariant
theory (ignoring quark masses) and find that in order to get sensible results all quantities
have to be defined with respect io some momentum cutoff. One can chang» the cutoff and
phyvsical quantities like masses remain unchanged if we suitable adjust the running coupling
constant (for n—point functions we have to include anomalous dimension factors). This
renormalization group invariance is embodied in eqn.(3.7).

For g = 1, we have no a priori reason to believe that eqn.(3.7) wo.«s. tlowever, we
can still write

m,a e fi(g) (3.%)

where f,(g) are unknown non-perturbative functions which reduce to eqn (3.7) in the limit
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g — 0. The expected behavior of mass ratios in QCD is
™ = Z(1+0(a’Ina)) (3.9)
my ¢;
and it is believed that corrections at ¢ < 1 to the ratios (coefficient of the O(a*In a) term)
are small compared to those for individual masses. The interval [g,,0] over which mass
ratios are constant is called the scaling region. We do know that g, > ¢4,y. The present
numerical data does not provide an unequivocal answer for g,. So achieving constant mass
ratios remains the goal of lattice calculations.

Let me restate these ideas from an operational stand-point. A lattice simulation is
done on a grid of size L* with two bare parameters g and mga (assuming flavor SU(2)
is unbroken so that mqy = m, = my). We then measure pion and rho masses, which in
lattice units are pure numbers i.e. m;(a)a = ¢;. By fiat we declare m, = 770 MeV. Then

Lome o 70 pey (3.10)
a ¢, ¢,
with ¢, evaluated at that mga for which '—n"-'f = ;f = %—Z—g. So we have used two known
masses to fix the two bare parameters (remember g and a are related by eqn.(3.7)). Now,
the test that QCD is the correct theory is that all other masses calculated - proton, delta
baryon, glueballs — agree + ith nature.

In the above procedure the value for ¢ was not specified. So you could ask whether
there exists another fixed point (different from gpare = 0) at which all mass ratios take on
physical values. If QCD is the fundamental underlying theory, then the answer is no. All
we want to know is how small g has to be for reliable results. For g < ¢,, as g — 0, all mass
ratios hecome constant with corre..ic-.s that vanish exponentially with g. Moreover the
variation of any mass measurcd in lattice units begins to show a ¢ dependence prescribed
by the 2-loop result eqn.(3.7) for ¢ < g,em. This as mentioned earlier is a consequence
of universality about the UV fixed point. So a good test of numerical calculations is that
scaling behavior is demonstrated vver a scale change of two or more.

To summarize, the lattice tleory is trivial at @ = ¢ = 0 and all £ = oo; physics is
extracted from the way physical quantities change as a -+ 0. At finite a all correlation
lengths are finite. The infinity arises because we start to measure a finite distance with
an increasingly fine scale. Introduction of a uait, A, gets rid of the spurious singularity.
However, the increasingly fine scale is necessary to remove errors due to the discrete lattice
formulation, As g —+ 0, the different correlation lengths (corresponding to different physical
excitations) do not diverge independently. They can all be expressed as a constant times a
given selected one, This is what one means by “the theory has a single mass/length «cale™.

The.e previous ideas of the continuum limit and scaling are forged by Wilson's for-
mulation of the renormalization group. It is a central concept in modern field theory and

you are encouraged to work through Ref. [23] .



In statistical mechanics the intramolecular separation (call it a again) is the natural
unit for lattice spacing while temperature and magnetic field are physical measureable
quantities. These couplings of the “effective” theory are in , -inciple derivable from a
fundamental microscopic theory, but for understanding macroscopic phenomenon we are
not interested in that connection. Starting with an effective Hamiltonian defined at scale
a, a lattice simulation describes physics for all r > a. By varying the couplings one can
investigate the behavior at different temperature, magnetic field etc.

In $M, models representing nature have to reproduce phenomenon at all physical dis-
tance scales and over a range of parameters (like temperature etr). To do this faithfully, we
need an infinitely complicated effeciive theory. Fortunately, simple models can describe the
behavior in limited domains. Of particular interest are critical points at which substances
undergo a drastic change in behavior. They show collective behavior with fluctuations
at all length scales. The 2-point correlation function no longer fall off exponentially but
with a power-law. This is characterized by § — 00. One would have thought that such
regions are complicated to analyze. The simplicity arises because the correlation functions
(n-point Green’s functions) scale, i.e. are dominated by a single large correlation length.
The many-variable functions become sirnple functions of a few reduced variables and scale
changes are expressable by simple equations (the Callen-Symanzik equations). These equa-
tions simplify further about the fixed point. The solutions to these idealized equations are
exc.llent guides to what one really observes in nature for distance scales much larger than
the granularity. This is the scaling hypotheses [24] .

One talks of critical points in both QFT and SM, but there is a subtle difference that
should be noted. In QFT, critical points are simply points at which the lattice scaffolding
can be discarded. So, tuning (¢ - 0) is necessary to get the continuum theory.

There is often confusion about critical points and fixed points. Fixed points are
special critical points at which the theory becomes exactly scale invariant. At critical
point there are corrections that go under the name of scaling violations. A generic form
of the correction is L&.’l where f(r) is a slowly varying function of r as £ -» co. Thus for
large distance behavior i.e. r =~ £ as £ -+ oo, the distinction between critical and fixed
point fades. It is worth remembering that physical systeins exhibit critical behavior. Fixed
points are mathematical constructs.

Now lets turn to effective/phenomenological theories in QFT. They differ from funda-
mental theories in that they are valid ouly up to some short distance cut-off. For energies
much smaller than the cutoff, the presence of the cut-off is a nild curiosity and effective
theories are an accurate description of navure. They have an advantage of focusing atten:
tion on the relevant degrees of freedom at that scale. Only for energies close to the cut off,|
the need for an underlying fundamental theory (or next level of effective theory) becomes

manifest. Effective theories can be derived from a microscopic theory by integrating out
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all degrees of freedom with momentum larger than a predefined cutoff. More often they
arise de facto; a theory is invented that describes phenomenon at a given scale and later
it is shown to be valid only up to some finite cutoff. An example is the 4-fermi theory of
weak interactions. In the next section I describe another possible relevant example of an
effective theory —— electroweak interactions in the standard model.

3.1) The SU(2) x U(1)y + Higgs model

The bosonic sector of electroweak interactions is described by the spontaneously bro-
ken gauge group SU(2) x U(1)y coupled to a doublet of higgs in the fundamental repre-
sentation of SU(2). Sc far no non-trivial fixed point is known for either the higgs model or
the U(1) theory. It is not known if coupling to SU(2) and the occurrence ¢ spontaneous
symmetry breaking gives rise to a non-trivial fixed point. While the presence/absence of
a non-trivial fixed point is an open problem, it is fairly certain that if such a fixed point
exists then it would be inherently non-perturbative so lattice calculations are our best bet
for settling the issue.

In the absence of a non-trivial fixed point the electroweak theory is a low energy
effective theuy. Let me first assume that this is the case. We would then like to know
under what circumstances is the IHiggs particle mass predictable or how to derive an upper
bound on it. Leiv me briefly outline how the community is going about addressing this
question. For details see the reviews by Shrock (25! and Jersak [26] .

A standard form for coupling the gauge interactions to Higgs is to modify the derivative
term in eqn.(2.1). The full action is Sy + S; + S3 with

S 31 e RN YULULS(z 1 ) 1 I AT D?(3.11a)
fp

F A

s, !-}’5 X'I'r(l (/,}) (3.114)
5y ", )3 'lz-’l'r(l 75 (3.11¢)
V2 -,

where 13 (1/}) and U} (171) are link (plaquette) variables of the ST/(2) and 17(1) theory
respectively and ¢ is a complex doublet of fields. ‘T'he theory has four independent couplings
g3, 91, A and x. The scalar action in the continuum in
. / 4 | f 2 "ln t A ! 12 g
S A4 AR T e T () (5.12)
J 2 2 1
and the relation between lattice and continuum quantities is given in equation: (2.2). In

the fol'owing I shall use o (H) to denote the continnum (lattice) field.
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In the limit g; = g; = 0, the Higgs model has an O(4) global symmetry with a line of
critical points given by x.(A) [23]. For small A one gets a decent approximation from eqn.
(2.2b) t.e. k. (A) = 1—%2—’1 There is mounting evidence that the continuum limit of this
theory taken anywhere along this line is trivial 1.e. the model reduces to a gaussian one
For k > k., the global O(4) is spontaneously broken and the spectrum consists of three
goldstone bosons and a massive Higgs. On the lattice, one can measure two quantities m,
and (¢) to fix the bare couplings and the wavefunction renormalization 74 to relate them
to the renormalized quantities. For x -+ k., the predictions for the O(N) gaussian model
are (27|

m? o ;c,(logrc,)"%% (3.13a)

(1) « K, (logr,) =TT (3.13b)
2

Mo (log k) ! (3.13¢)

©
0

(¢%)

where x, = |k - k.|. Eqn. (3.13c) tells us that the Higgs mass goes to zero at all points
along the critica! line. On the other hand, when m,a =~ 1, a cut-off theory ceases to make
sense and estimates of the Higgs mass become unreliable. In between these two limit cases
one has a gensible effective theory with A\g # 0. The renormalized coupling and field
strength can be defined to be

m2
AR F oo 3.14
ST 3} (3.140)
(8%) - Z4(ok) (3.14b)

where the Z4 factor depends on the renormalization scheme and is different on the lattice
and in the continuum, All renormalized quantities are henceforth denoted with a subseript
.

To predict the Higgs mass we need to relate (¢r) to Mw [28] . This is done by adding

the ST/(2) gauge interactions by hand using the tree-level continuum relations

2
My ‘q':" () (3.15a)
M 4
i gl (3.15h)
My, Ui
gk AVIEIMA G s 0 (3.15¢)
where we put o, My and use (p 1166 « 10 Y leV 2 Note that in the abxence

of 17(1) there is no weak mixing angle, Since Ay increases ax the cut-ofl is decreased, the
upper hound on equ. (3.15h) is at the smallest cut-oll (of course Targer than My for

which sealing oceurs,



Two different numerical approaches have been used to measure m,, (¢*) and Z4 on
the lattice. For a description and detalls see Refs. [29] [30] and [31] [32] For a fixed cutoff
(i.e. a fixed value of m,a) the larges. upper bound on the Higgs mass occurs for A — oo.
The present estimate from these calculations is r—':—g- ~ 10 evaluated at m,a =~ 0.2. [n the
last year, Liischer and Weisz have developed analytic methods (combining renormalization
group equations with high temperature series expansion) to analyse the A¢* model and
calculate the bound on the Higgs mass (33] . These techniques are well worth learning and
[ encourage you to work through these papers.

The next step is to include the SU(2) gauge interactions in lattice simulations. The
qualitative change that occurs is that in the Higgs phase the goldstone bosons of the O(4)
theory become the longitudinal excitations of the gauge bosons and this combination gives
the three massive W-bosor.s. Other than that, for small g3, we assume that the gauge
interactions can be nandled perturbatively and that the physics is controlled by the O(4)
fixed point of the Higgs model. Then for fixed A and ¢z, we can calculate my and my on
the lattice as a function of x in the broken phase near x,. To test the assumption of the
relevance of the O(4) fixed point, one compares the scaling behavior of the masses against
eqn. (3.13) and againit eqn. (3.15a). Next vary g3 and repeat the calculation. Then for
a fixed cut-off (i.e. Mwa = constant), the ratio ;1"1“:; is determined as a function of ¢g;. If
the ratio does not change dramatically as a function of g, and both my and my are small
compared to th. cutoff, then we get a reliable estitnate of the ratio. To make a prediction
we have to tune gy such that g = 0.4 as given by eqn. (3.15¢). Again, the upper bound
comes from taking A » oo for a fixed cut-off and then decreasing the cut-off while staying
in the scaling region. If this is the correct scenario, then in additicn to a bound on the
Higgs mass we have an estimate of the scale (1.e. the cut-off) at which new physics sets in.

In the above discussion | have made the implicit assumption that adding U{1)y and
fermions to SU/(2)  Higgs model do not change the bound very much. The effects of the
[/(1)y can be estimated by incorporating it in lattice simulations and checking th tree
level relations involving the weak mixing angle. The fermion sector is an open problem at
present since we do not know » o put chiral fermions on the lattice. For some recent
work with non-chiral fermions see the review by Shrock.

If we lind a non-trivial fixed point in the bosonic sector of the f 1 theory then we lirst
need to show that it is relevant to the standard model by measuring m, and (@) and 7,
(or equivalently rmyy and miy) on the lattice. If these agree with natare, then the previous
discussion changes only in the following way: the value of lattice coaplings at which to
make contact with the continnum are determined 1.e. the mass ratio is calenlated an o
Lhouting process by tuning the couplings to their eritical point values, There remaing only
one Jength scale in the problem, say (), and the Higgs mass can be predicted,

The presence of a non tnivial fixed point at large ¢4 and ¢ s not raled ont by the
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known small values of G and a.m if the model has large renormalization effects. The

relation between the bare and renormalized quantities has to be determined by measuring
physical observables; for example the potential between two external charges can be used
to define gg in terms of g and eqn.(3.14a) for Ag. 3o far there is no evidence for large
renormalizations in the broken phase of either the SU(2) Higgs model or the U(1) Higgs
model. Thus the present consensus seems to be that a search for a non-trivial fixed point

is a high pay off but a very high risk undertaking. However, since the presence/absence of

non-trivial fixed points can only be settled by non-perturbative methods, it is necessary

to develop the tools.

4) STATUS CF LATTICE CALCULATIONS

4.1) Necessary Ingredients For A Good Calculation

To make progress while waiting for faster computers, we have to develop a fast update

algorithm which includes a fast matrix inversion routine for the quark propagator. To

enhance the signal in measurements we need to design better operators. To answer the

question - how much better, we have to recognize our goal in 4 categories:

(a) Statistics: Need to develop ever faster algorithms for producing decorrelated contigu-

(b)

(d)

rations. T'he average over configurations should give a faithful representation of the
path integral. Also, one should always explore (and be aware of) variance reduction
techniques [34] to reduce errors.
Extrapolation to mya =~ 0: We need to do the calculations as close to the physical
light quark masses as possible. The picn correlation length grows as ;/W‘r',’n s0 the
lattice vize has to be adjusted accordingly. The matrix inversion problem suffers from
critical slowing down in the limit rmga + 0. A method that in principal counters this
critical slowing down is fourier acceleration. In tests done so far, fourier acceleration
gave no significant improvement for Staggered fermions on lattices np to 16" < 32 [35]
For Wilson fermions, the gain in 2 3 and the method seemas more promising. We
need alternative methods which are significantly faster,
Control Over Finite Volume Effects: The mass estimates should be made close to the
infinite volume nmit or we must develop demonstrably relinble finite volume extrapo-
lation formulas, Right now we are struggling to make the lattice volume large enough
so that the states are not squeezed into a box smaller than heir size. A desirable goal
v Lo have a physical lattice size that is at least 4 fermi across, The present box sizes
are only -2 1.4 fermi,

Extrapolation tog + 0: The lattice introduces scaling violations at finite g that vl

30



in the limit ¢ — 0. A reasonable test that the lattice results mimic the continuum
is constancy of mass ratios over a range of coupling for which the scale changes by
a factor of 2. Finding improved actions, as discussed in section 2.3, to reduce these
corrections for some fixed correlation length would help greatly.

A rude estimate of the kind of power we need with present algorithms to perform the
next generation quenched calculations is 104 gigaflop hours. With dedicated computers
being built this goal is within sight. But the need for a gorithm development is obvious.

Status of Nurmerical Results

[ wi!l just summarize the key issues and the status of present calculations. For details,
see the lectures by M. Fukugita and R. Gupta in [6] and the reviews [36] [37] . A word on
notation; the SU(3) gauge coupling is specified in terms of either g or § = ;67

4.2) The Hadron Spectrum:

The calculation of low lying meson and baryon masses from first principles will be
proof that QCD is the correct theory of strong intera<tions. Thus, many calculations have
becn done (see Table VI by M. Fukugita [37]). Most large lattice calculations have been
done in the quenched anproximation. This approximation can at best be justified up to
10% for hadron masses. The true accuracy of the approximation will be known only a
posteriori after all other sovrces of error (see section 4.1) are removed.

Present resulte show a vonsistently large value for the ratio %’# t.e. ~ L5 The value
1.5 is expected in the limit of infinitely heavy quarks. Since all present calculations the
lightest quark mass used is still too large (m, < 2rm,) we have to resort ta extrapolation
to get physical mass-ratios. One set of calculations (38] [39] [40] do not give a reasonable
estimate for the ratioc when results are extrapoiated io the physical ¢, ‘ark mass, On the
other hand a number of calculatiors; [41] , [42] , [43] [44] do find a smocth extrapolation
in my, and the results are consistent with the physical numbers. Does the difference lie in
the fitting procedare to extract the lowesat miss and in the mal e apolation in m,? It
would bhe useful if a single unbiased person analysed il the data starting with the 2 Hoint
correlation functions averaged over configurations,

[ feel that we need to avold the extrapolation from large m,. To go to smaller »

Q"
requires larger latuices (te control finite size effects) and significantly more statisties to
overcotne the deteriorating signal to noise ratio. The next generation computers will take
us closer to the brute force solution increase the lattice size and the statistics and push
towards physical s, without algorithm improverient,

The caleulations with dynamical fermions have been done on smaller lattices ana al

stronger coupling. More tmportant, they have been done at still heavier quark manses,
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i.e. (m, < 2m,). The resulting spectrum is essentially the same as the quenched case
[45] [37]. [46] [47] [48] This result is not unexpected for heavy quark masses. In fact it is
consistent with data for mesons and baryons with all strange quarks.

An additional problem in present lattice calculations is that the baryon mass is large
in lattice units t.e. ma ~ 1. Thus there is no reason to expect that the lattice granularity
does not significantly effect its measurements. This possible source of error will also be
exposed when the quark mass is decreased.

To sort out the nucleon to meson mass ratio discrepancy and verify things like the
nucleon to Delta mass splitting one needs to follow a three step program: 1) For fixed
coupling (say ;“,- == 6.0) make a finite volume study (on lattice sizes 16,24,32 ...) varying
m, until one reaches close to the physical quark mass. The purpose here is to eliminate
finite size effects and the extrapolation from large my. 2) To decrease g until mass ratios
at physical quark masses become constant. This eliminates possible scaling violations. 3)
Having gained control over statistical and systematic errors repeat the calculation with
dynamical fermions.

The positive aspects of quenched calculations are: 1) the spectrum with Wilson and
staggered fermions show agreement, starting at § ~ 6.2 [38]. 2) Similarly, starting at this
coupling the staggered flavor symmetry is dynamically restored to SU(n;) (up to 5%) [38]
(39]. 3) In all calculations, the pion shows the expected chiral behavior (m? o« m,) up to
unexpectedly large m,. It is not clear if this is good or bad considering the "fﬁ- problem.
Are we being misled by an apparent lincar behavior while the true chiral behavior will
set-in for much smaller m, or are the extrapolations for the baryons from heavy m, at

fault? The next generation calculations will address these questions.

4.3) The Heavy ¢f Potential:

Our goal is to predict the toponium spectrum from a lattice derived potential. This
leulation relies on our ability to calculate the expectation value of large Wilson loops or
2-point correlation of Wilson lines at large separation. Present estimate of the accuracy
necessary in Monte Carlo calculations is - 0.5% error in 10 <« 10 loop at J} 6.0,
Thix accuracy factor depends on the string teasion (oa? is falling exponentially with ¢)
and the size of the loop we need to measure to probe the same physicai distance (r/a is
increasing exponentially). Based on present estimates of lattice scale a, to extract just
the spin independent potential in the range of charmonium to toponium (0.02 fermi to |
fermi) we need to measure at least 10 - 10 loops all the way from U", 6.0 to 7.0 Thus,
without an algorithm improvement we are at least a factor of 10? short of the computer
power needed to provide a reliable answer.
The succesues o far are qualitative 1) The shape of the spin independent potential

coroughly consistent with the Cornell potential with a linear piece dominating forr - 05
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fermi. The small r beh..vior dces not show good agreement and it is speculated that the
quenched approximation is at fault. Present calculations with feriions are not accurate
enough to shed any new light on this problem. 2) The spin-orbit term V) in the spin-
dependent potential is long range [49] .

For hard numbers, the string teusion is the best measured quantity. The world data
(with my biased selection) is shown in Table 4.1 [50] [51] (52| [53] [54] [55] [56] . The
results suffer from two systeraatic effects; 1) the difference between Wilson st+ing tension
and 't Hooft string tension and 2) it has not been reliably demonstrated that the estimate

of o is independent of ioop size (or the separatio. in the 2-point correlation functions).

Thus there may still be large errors in the extraction of 0 - — =~ 50% even at % ~ 6.0.
;,2: ow ow at Ty ]
5.5 0.340(15)[52]
5.6 0.279(9) [50]

| 5.7 [ 0.195(10)[53] T 0.155(5) [52]
5.8 0111(3) [50] | 0.099(1)[51]
5.9 0.068(3) [56 0.062(3)[52][55]
6.0 0.061(2) [50] 0.046 [54] 0.050(2) [56] 0.042(3) [52]
6.1 0.046* [51]
6.2 0.036* [50] 0.026(3) [56]

KX 0.0173 [54] -

Table 4.1 : Fstimates of the Wilson (ow ) and 't Hooft (o¢) string tension. | have included
the ..A,’f-; finite volume correction in o, The « against values indicates that the estimate is
not asymptotic. Note the systematic error when more than one group has extracted o at

the same coupting, and also the diflerence between ow and oy.

Cadeulations with dynamical fermions are still qualitative becaude small lattices have
heen used in the region ¢+ ga. One does see evidence of sereening; the lattice potential
does not have as strong a linear rising piece as in pure ST/{3) 871, This is the expected
hehavior: light quarka will cavse the string to break and form mesons when we try to

separate a ¢ pair beyond a certain distance.
4.4) The Zlueball Spectram:

The masses and properties of glueballs are a magor untested prediction of QCD. Fon
A statun report on the experimental status see review by Chanowitz D580 0 Since mass

calcubations are imtrinsically non perturbative, the only reliable method s numerical sim

ulations on the lattice. Lattice gluehall mass measurements have mainly been done fon
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the pure gauge theory (preliminary calculations with dynamical fermions have used @ very
large uark mass). Therefore we have no new informaticn on mixing between glue states
and states with the same quantum numbers but with quarks in them.

The two main bottlenecks in glueball calculations have been 1) a rapid loss of signal
with increasing J at a given physical separation 7 (see eqn.(2.28)). Worse his distance
is not large enough to allow a clean single exponential 1t to extiact the mass of lowest
state. 2) large finite volume effects. To solve the first problem we need to invent better
interpolating field operators. Because of these problems, the only pure glue state for which
we have a modestly reliable estimate is the 0t+. By Murphy's law, the experimental
information on this state is poor.

['he world data from large lattices and for ;'3; < 6.0 is showrn. in Table 4.2 along with

the string tension result from the same data. The present estimate for the ratio %i- is
3.1 - 3.4(1300  1400MeV) [59] [60] (61] [55] (56]. Se far this ratio has shown stability
under an increase of the lattice volume (except for set 15 in Table 4.2). 1 feel that we still
need more careful checks at a larger lattice volume and larger g.

For the initiated only: [ would like to contrast the riults of Teper et.al. [56] obtained
with improved interpolating field operators but without “he source method to enhance the
signal at large r with those from the source method a* # - 5.9 (i.e. set 19 versus 11 and
[4 in Table 4.2). The result for oa? is 0.068(3) versur G 062(2) and for the 0'* mass it
is 0.81(3) versus 0.75(6). The estimates by Teper et.al. are systematically higher. Two
possible reasons are; 1) the results of Teper et.al. are not asymptotic s.e. tney have not
been measured at large enough separation or 2) there is a Lias in the source method; the
effects of the lack of positivity of the transfer matrix have net been fully removed at present
separations t.e. 1 is small in the source inethod too, Mere work iu needed to decide what
is the correct explanation and to get hetter resul!s.

Fstimates of the 2*'' state are less reliable. The litest word s that g ie =
1.6 1,00 560 The results of Teper et.al. are in agreesnent with Kolier-Van Baal [62]
analytic caleulations for small volumes but suggest that continuum behavior only sets
in at much larger spatial volumes. The conclusion is that a sonall volume the 21
tasy i3 almost degenerate with 0° ' but changes rapidly between 10 - [« 16 at if ==
6.0 The string tension and 0'Y mass do not show simitar strong hnite velume effects.
Therefore mass ration are affected and consequently exteanolations cannot he made from
sl volumes, We need more corraborative data to confir:n this exaiting result.

The tour de force analytic calculations of Koller and Van Baal (62/have provided an
accurate calibration of small volume lattice calculations and aa insight to the physical
proture in that region. We hope that these caleulations can be extended beyond the vegion
where fimite size effects are large. At present, we still have Lo vely on nemerical simulations

for the continuum behavior. So the foeus of current research is to develop update schemes
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# Ke Lattice o(L)L Vv o(oo) mg(L) "':(m)

1 9.2 6° x 21 0.76(5) | 0.395(25) | 0.91(10) | 2.3(3)

2 9.9 67 x 21 0.32(1) 0.287(12) | 0.79(11) 2.8(4)

3 9.9 9% x 21 0.63(2) | 0.288(10) 0.89(8) 3.1(3)

4 10.5 97 x 21 0.38(1) | 0.235(14) 0.67(6) 3.0(3)

5 10.5 127 x 21 0.57(3) | 0.234(28 0.64(7) 2.8(4)

6 5.5 6% x 12 1.86(6) 0.58(1) 1.07(3) 1.84(6)

7 5.7 6 x 16 | 0.63(2) 0.37(1) 0.66(4) 1.8(1)

8 5.7 8% x 16 0.94(3) 0.37(1) 0.86(4) 2.3(1)

9 5.9 8% x 20 0.33(2) 0.24(1) 0.73(14) | 3.0(6)

10 5.9 109 x 20 | 0.52(1) 0.25(1) 0.68(8) 2.7(4)
11 5.9 12 x 20 | 0.65(3) 0.25(1) 0.74(7) 3.0(3)

12 6.0 10° x 20 | 0.41(3) 0.21(1) - -

13 5.9 10° x 32 | 0.48(3) 0.24(3) 0.65(3) 2.7(2)

14 5.9 12 x 32 | 0.66(1) 0.25(1) 0.76(4) 3.05(2)

15 5.9 167 x 32 0.86(3) 0.24(2) 0.82(5) 3.4(3)

16 6.0 137 x 18 - - 0.65(8) -

17 6.05 137 x 18 - - 0.66(7) -

18 6.1 133518 - - 0.64(10) -

19 5.9 124 - 0.26(1) 0.81(3) 3.1(2)

20 6.0 16 - 0.22(1) 0.74(4) | 3.3(2)

21 6.2 20% 0.16(2) [ 0.47(5) 2.9(4)

Table 4.2:
5 entries are for the improved action calculations [59]. Entries 6 to 12 are from de Forerand
et al [52]; 13 to 15 are from the APE collaboration [55; 16 to 18 are from DeGrand (61

and 19 to 21 are from Teper et.al. [(56]. Entries 6 to 21 are using the sitaple Wilson action

Monte Carlo data for the O'Y glueball mass and the string tension o, T'he first
K

(t.e. coupling Ky 3 on the Wilson axis).
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that have fast decorrelation times [63] , to design better operators as probes of glueballs,
to construct sources that enhance the signal at large r and use improved actions to reduce
scaling violat'ons.

4.5) The (- “unction for Pure Gauge SU(3).

The A-function in QCD measures the rate of change of scale with a change in the
coupling constant g. We know the behavior of the S-function at small g from perturbation
theory (eqn.(3.4)). At g where lattice calculations are done the 2-lattice MCRG method
[2] is a reliable way to measure the discrete non-perturbative G-function of QCD [64] . A
test for asymptotic scaling at a given value of 3 is to compare the MCRG result for AjS
to the 2-loop perturbative result.

On the lattice we measure the discrete 8-function; Af for a given scale change 6 =
ay/az. So far MCRG calculations have used two different scale factors; 1) b = v/3 and 2)
b = 2. The present limitation of results with this method is that the starting lattices are
not large enough to extract a converged value of AJ3; i.e show that it is constant over a
few blocking levels. Alternately, one can also extract Af from physical observables like
masses, string tension or the deconfinement transition temperature. The main error in
this method is that we have no real estimate of the errors in physical observables 1.e. have
they been obtained from measurements at large seperation? For example, one Las yet
to show that the string tension is independent of the loop size used in the measurement.
The best estimate of the confinement scale is from the measurement of 'he pure gauge
deconfinemnent transition temperature [65] . Unfortunately, in this case the value of the
coupling ¢ is not sclected to get a fixed rcale change. I have tried to reduce this second
error by only using pairs of data points for which the scale change is close to b = /3 in
fig. 4.1. You should try to estimate what is the possible uncertainty in the global data for
A due to these systematic errors. Note that in fig. 4.1, [ have rescaled all Af to * -~ V3
for comparison.

All calculations agree on the large dip near § - 6. There is some discrepancy on the
approach to the 2-loop perturbative value. The b = 2 calculation by the Edinburgh group
'66] shows a signiticant deviation from the perturbative behavior up to g - 7.2. It would
be valuable to reduce the errors at the last two points, J ~ 7.0 and 7.2. The b V3
calculation also gives a vilue smaller than the 2-loop result up to 4 7.0 [67] . Between
i 6.2 and 7 there are =~ 10% deviations from the 2-loop value but A/ is not as small as
the Edinburgh result. The estimates at J - 7.25 and 7.5 are consistent with asymptotic
scaling. The statistics at these two points are 50,000 sweeps (5000 measurements), so the
estimate of statistical errors is reliable. The systematic errors are estimated at 22 10°0 over
the entire range of 7 investigated. I feel that the difference in results at large (7 from using
the two renormalization group transformations is significant, so we need to examine the

systematics of the two transformations.
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The A result is important because if we want to solve QCD with better than 10%
uncertainty, then we need a non-perturbative scaling ansatz since perturbative scaling has
at least 10% corrections up to 3 = 7.0. The prime source of unknown systematic errors
in the MCRG calculation is the number of blocking steps. Because of these, the present
calculations cannot distinguish between a slow approach to asymptotic scaling between
B = 6.2 and 3 = 7.0 after the pronounced dip at 5 = 6.0 and the possibility of additional
structure due to phase transitions in the extended coupling lattice theory. For the v/3
transformation, the next obvious reiinement step is to reco the calculations with a larger
lattice:; for example, a 9v/3 lattice allows one more blocking step.

4.6) Status of the Finite Temperature Transition

What happens to Quantum Chromodynamics (QCD) as the temperatuse is increased?
Is there a phase transition to a quark-gluon plasma, and if so what is its order? Over the
last couple of years, the answers to these questions for the realistic case of very light u and
d quarks and an intermediate mass s quark are beginning to emerge.

Let me first review the expeciations for the phase diagram of a theory simpler than
QCD: SU(3) gauge theory with ny degenerate flavors i quarks. The parameters are the
quark mass m, and the temperature 7. For m; = co the theory reduces to pure gauge
SU(3). There is considerable numerical evidence [68] [65] that this theory has a first order
deconfinement transition. The Polyakov line (L) is the order parameter for this transition.
[t vanishes below the transition temperature T,, but has a non-zero value above. The global
Z(3) symmetry of the pure gauge theory is spontaneously broken above T.. Quarks wich
finite mass act as external fields coupled to (L), and their inclusion weakens the transition.
The Z(3) symmetry is explicitly broken, »o (L) is never zero, but it is still discontinuous
at the transitior, and thus remains an indicator that the transition is associated with
deconfinement. As m, decreases it is possible that the transition weakens and actually
vanishes, allowing an analytic connection between confined and deconfined phases. Also
possible is that the transition jcins continuously onto the chiral transition, which I discuss
next.

For m, = 0 the theory possesse - 1 exact SU{n,)x SUU(n,) chirai symmetry. For high
T there is an additional approximate axial U (1) symmctiry (broken by instanton contribu-
tions). It is believed that these symmetries are spontaneously broken at low temperatures,
but are restored above a critical temperature. The order parameter for this chiral transi-

tion is (Yy), which is non-zero only below T.. An ¢ expansion suggests that the transition

is first order for ny - 3, but may be first or second order for ny  2(69] . Forn, 4
this cone  ion is supported by a calculation using an approximate renormalization group
equation Il . At g oo (strong coupling expansions), in a Hamiltonian treatinent of the
ny 2 theory 71 | and in both Hamiltonian and Lagrangian treatments of the ny
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thecry [72] , the chiral transition is of second order. Turning on m, removes the transition,
and the high and low temperature phases are analytically connected at finite quark mass.
As the gauge coupling decreases, however, it is possible that the transition extends out to
finite my.

For finite mq, (Xx) is always non-zero, but may be discontinuous across a transition.
If so, this would signify that the transition is associated with chiral symmetry breaking.
In fact, if chiral symmetry breaking is driven by confinement, as is suggested by all present
evidence, then it may be that, for weak enough gauge coupling, the chiral phase transition
line matches onto the deconfinement transition line, cutting the phase nlane in two.

The crucial issue for QCD is whether, for auarks with the actual masses observed in
nature, the transition is first order, second order or not present at all. The significance
of this result is vwofold. First, planned heavy ion experiments will be able to investigate
hadronic matter at temperatures up to a few hundred MeV. The signature of a transition
to a plasma phase depends upon the order of the transition and upon its properties (73] .
Second, as the early universe cools down it passes through the transition. If the transition
is first order, entropy production reduces the baryon to photon ratio. Furthermore, a first
order transition changes the vacuum energy density and thus the cosmological constant.
More exotic scenarios, such as neutron-proton separation [74] , also depend crucially on
the order and strength of the transition.

Lastl: . the study of the chiral transition is an excellent test of the evolving fermion
algorithms. There is some controversy in the results from different algorithms which may
be due to systematics of the algorithm. Here I will only give the status of the results for
ny =2 and 4.

There is a consensus that for Ny = 4 and 4 flavors of staggered fermions, chere is a
strong first order chiral transition at small masses, i.e. ma - 0.025. On 4% lattices this
transition has been shown to survives up to ma = 0.2 and there is evidence that it exists
for all masses [75] . Simulations on a 4 x 6 lattices show that (X¥x)ceases to be a good
observable to monitor the transition for rna > 0.3 [76] . However, the discontinuity in
(L)suggesis that the transition is still first order for all m.

Data on 4 x 83 lattices with approximate algorithms is debated. Fukugita et.al[77] ,
show evidence for metastability at ma - 0.1 while Gottlieb et.al.[78] and Karsch et.al.[79

see a clear signal only at m - 0.025. In fig. 4.2, | show results using the Hybrid Monte

Carlo algorithm which confirm a first order transition as evidenced by the flip-flops in
Wilson loops, {L)and (¥x)[80] .

Finally, on a 6 « 10Y lattice, Kovacs ot.al.

81] find a first order transition at ma  0.025
but not at ma  0.05. | believe that a more careful calculation will find metastability at

the heavier quark mass.

The status of the chiral transition using approximate algorithms for ny 2% one
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of conflicting evidence. For ny = 2, Gottlieb et.al.[78] see no clear evidence of a transition
for ma = 0.0125 — 0.2. In contrast, Kogut and Sinclair {82] find a first order transition
for ma = 0.0125, but no transition for ma = 0.025. However, Gavai et.al.[83] do find a
transition for mga = 0.025, while Fukugita et.al.[84] see one for ma = 0.1. We should also

mention that Gavai et.al.[85] find that the transition is first order along an interpolation
between ny = 2 and ny; = 3 where two quarks are held at ma = 0.025, while the mass of
the third is varied between 0.025 and oo.

Calculations for ny = 2 with an exact algcrithm have only been done on a 44 lattice
at -~a = 0.02. One again finds a strong first order transition [80|.

Recently two independent calculations have further confirmed that at 7' - T,
chiral symmetry is restored by showing that parity doublet states, (7 ",o'') and
(N(%+),N‘(%—) ), become degenerate [86] [87] . They also show ihat the screening
lengths for states with these quantum numbers do not become infinite (massless particles)
in the limit m, — 0. We have yet to understand how to connect these scre. :ing lengths to
physical excitations. So an interesting area for research is to understand the equation of
state and properties of matter above T, and make connections with heavy ion experiments.

The conclusions from present calculations are 1) there is a definite strong first order
transition at small quark maasses for ny = 2,3,4; 2) this transition extends out to suffi-
ciently heavy quark mass to cover the physical case of light u, d and the s quark and 3) the
transition temperature is between 100 to 170 Mev. To end on an optimistic no.e, I believe
that this estimate will be made more precise in the near future and numerical simulations
will provide us with some information on the nature of matter above T..

CONCLUSIONS

With the emergence of more powedful computers, development of better algorithm.
and our ability to formulate the questions better, the estimates of physical quantities from
Monte Carlo simulations will progressively get better. | believe that the next five years
will be very exciting even though calculations will be long and hard. The treatment in
these lectures has been brief and many interesting topies have been skipped. A notable
eximple is strong interaction corrections to weak interaction matrix elements (KR8] . 1t
by and large, the greatest deficiency of these lectures is a total Lack of discussion of analytic
methods. | hope thav at least some of you will be motivated to pick ip other review articles

and probe deeper into the subject,
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